Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
NMR Biomed ; 37(6): e5113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316107

RESUMEN

31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and ß-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.


Asunto(s)
Algoritmos , Magnesio , Magnesio/análisis , Magnesio/química , Concentración de Iones de Hidrógeno , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Fósforo/química , Isótopos de Fósforo
2.
Magn Reson Imaging ; 105: 133-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939973

RESUMEN

Maxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.


Asunto(s)
Artefactos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Voluntarios Sanos
3.
Radiol Imaging Cancer ; 6(1): e220127, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38133553

RESUMEN

Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.


Asunto(s)
Neoplasias Encefálicas , Glioma , Masculino , Humanos , Femenino , Persona de Mediana Edad , Medios de Contraste , Estudios Prospectivos , Gadolinio , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Necrosis , Concentración de Iones de Hidrógeno
4.
Biomedicines ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760790

RESUMEN

Amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) imaging can predict clinical outcomes in patients with glioma. However, the treatment of brain tumors is accompanied by the deposition of blood products within the tumor area in most cases. For this reason, the objective was to assess whether the diagnostic interpretation of the APT and ssMT is affected by methemoglobin (mHb) and hemosiderin (Hs) depositions at the first follow-up MRI 4 to 6 weeks after the completion of radiotherapy. A total of 34 participants underwent APT and ssMT imaging by applying reconstruction methods described by Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT and MTRRexMT) and Mehrabian et al. (MTconst). Contrast-enhancing tumor (CE), whole tumor (WT), mHb and Hs were segmented on contrast-enhanced T1wCE, T2w-FLAIR, T1w and T2*w images. ROC-analysis, Kaplan-Meier analysis and the log rank test were used to test for the association of mean contrast values with therapy response and overall survival (OS) before (WT and CE) and after correcting tumor volumes for mHb and Hs (CEC and WTC). CEC showed higher associations of the MTRRexMT with therapy response (CE: AUC = 0.677, p = 0.081; CEC: AUC = 0.705, p = 0.044) and of the APTwasym with OS (CE: HR = 2.634, p = 0.040; CEC: HR = 2.240, p = 0.095). In contrast, WTC showed a lower association of the APTwasym with survival (WT: HR = 2.304, p = 0.0849; WTC: HR = 2.990, p = 0.020). Overall, a sophisticated correction for blood products did not substantially influence the clinical performance of APT and ssMT imaging in patients with glioma early after radiotherapy.

5.
Magn Reson Med ; 90(4): 1569-1581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317562

RESUMEN

PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/radioterapia , Glioma/patología , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Protones , Curva ROC
6.
Radiother Oncol ; 184: 109694, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150450

RESUMEN

BACKGROUND AND PURPOSE: Outcome prediction of patients with glioma early after the completion of radiotherapy represents a major clinical challenge. Previously, the prognostic value of chemical exchange saturation transfer (CEST) imaging has been demonstrated in patients with newly diagnosed glioma. The objective of this study was to assess the potential of amide proton transfer (APT)-, relayed nuclear Overhauser effect (rNOE)- and semi-solid magnetization transfer (ssMT)-imaging according to Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT, MTRRexNOE and MTRRexMT) and Mehrabian et al. (PeakAreaAPT, PeakAreaNOE and MTconst) for the prognostication of the overall survival (OS) of patients with glioma at the first follow-up after the completion of radiotherapy. MATERIALS AND METHODS: 49 of 72 participants with diffuse glioma, who underwent CEST MRI at 3T between July 2018 and December 2021 4 to 6 weeks after the completion of radiotherapy, were analyzed. Contrast-enhancing tumor (CE) and whole tumor (WT) volumes were segmented on T2w-FLAIR and contrast-enhanced T1w images. Kaplan-Meier analysis and logrank-test were used for statistical analyses. RESULTS: APTw imaging demonstrated the strongest association with OS (HR = 4.66, p < 0.001). The MTconst (HR = 2.54, p = 0.044) was associated with the OS of participants with residual contrast-enhancing glioma tissue, whilst the MTRRexAPT (HR = 2.44, p = 0.056) showed a trend in this sub-cohort. The MTRRexNOE, MTRRexMT and PeakAreaNOE were not associated with survival. CONCLUSION: Imaging of the APT and ssMT at the first follow-up 4 to 6 weeks after the completion of radiotherapy at 3T were associated with the overall survival of study participants with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Protones , Estudios de Seguimiento , Amidas , Glioma/diagnóstico por imagen , Glioma/radioterapia , Glioma/patología , Imagen por Resonancia Magnética/métodos
7.
Magn Reson Imaging ; 91: 24-31, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550841

RESUMEN

PURPOSE: In fibroglandular breast tissue, conventional dynamic contrast-enhanced MR-mammography is known to be affected by water content changes during the menstrual cycle. Likewise, amide proton transfer (APT) chemical exchange saturation transfer (CEST)-MRI might be inherently prone to the menstrual cycle, as CEST signals are indirectly detected via the water signal. The purpose of this study was to investigate the influence of the menstrual cycle on APT CEST-MRI in fibroglandular breast tissue. METHOD: Ten healthy premenopausal women (19-34 years) were included in this IRB approved prospective study and examined twice during their menstrual cycle. Examination one and two were performed during the first half (day 2-8) and the second half (day 15-21) of the menstrual cycle, respectively. As a reference for the APT signal in malignant breast tumor tissue, previously reported data of nine breast cancer patients were included in this study. CEST-MRI (B1 = 0.7µT) was performed on a 7 T whole-body scanner followed by a multi-Lorentzian fit analysis. The APT signal was corrected for B0/B1-field inhomogeneities, fat signal contribution, and relaxation effects of the water signal and evaluated in the fibroglandular breast tissue. Intra-individual APT signal differences between examination one and two were compared using the Wilcoxon signed-rank test. The level of significance was set at p < 0.05. RESULTS: The APT signal showed no significant difference in the fibroglandular breast tissue of healthy premenopausal volunteers throughout the menstrual cycle (p = 1.00) (examination 1 vs. examination 2: mean and standard deviation = 3.24 ± 0.68%Hz vs. 3.30 ± 0.73%Hz, median and IQR = 3.36%Hz and 0.87%Hz vs. 3.38%Hz and 0.71%Hz). CONCLUSION: The present study provides an important basis for the clinical application of APT CEST-MRI as an additional contrast mechanism in MR-mammography, as menstrual cycle-related APT signal fluctuations seem to be negligible compared to the APT signal increase in breast cancer tissue.


Asunto(s)
Neoplasias de la Mama , Protones , Amidas/química , Neoplasias de la Mama/diagnóstico por imagen , Dimaprit/análogos & derivados , Femenino , Humanos , Imagen por Resonancia Magnética , Ciclo Menstrual , Estudios Prospectivos , Agua
8.
J Magn Reson ; 339: 107219, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35533642

RESUMEN

Diffusion-weighted imaging (DWI) is a powerful, non-invasive tool which is widely used in clinical routine. Mostly, apparent diffusion coefficient maps are acquired, which cannot be related directly to cellular structure. More recently it was shown that DWI is able to reconstruct pore shapes using a specialized magnetic field gradient scheme so that cell size distributions may be obtained. So far, artificial systems have been used for experimental demonstration without extraporal signal components and relatively low gradient amplitudes. The aim of this study was to investigate the feasibility of diffusion pore imaging in the presence of extraporal fluids and to develop correction methods for the effects arising from extraporal signal contributions. Monte Carlo simulations and validation experiments on a 14.1 T NMR spectrometer equipped with a dedicated diffusion probe head were performed. Both by using a filter gradient approach suppressing extraporal signal components as well as by using post-processing methods relying on the Gaussian phase approximation, it was possible to reconstruct pore space functions in the presence of extraporal fluids with little to no deviations from the expectations. These results may be a significant step towards application of diffusion pore imaging to biological samples.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Agua , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
9.
Magn Reson Med ; 88(2): 546-574, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452155

RESUMEN

Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.


Asunto(s)
Neoplasias Encefálicas , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Consenso , Dimaprit/análogos & derivados , Humanos , Imagen por Resonancia Magnética/métodos , Protones
10.
Magn Reson Med ; 88(2): 511-523, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35381111

RESUMEN

PURPOSE: The non-invasive determination of the free magnesium ion concentration ([Mg2+free ]) using 31 P MRSI in vivo is of interest in research on various pathologies, e.g. diabetes. The purpose of this study was to demonstrate the potential of 31 P MRSI at 7 T to enable volumetric, high-resolution mapping of [Mg2+free ]. METHODS: 3D 31 P MRSI datasets from the lower leg of three healthy volunteers were acquired at B0  = 7 T with a nominal spatial resolution of (8 × 8 × 16) mm3 in 56 min. Volumetric [Mg2+free ] maps were calculated based on the quantified local chemical shift difference between the α- and ß-resonance of adenosine triphosphate (ATP) considering also local pH values. Mean [Mg2+free ] values from three different muscle groups were compared. To demonstrate the potential of reducing the measurement time, the analysis was repeated on the acquired MRSI data retrospectively reconstructed with fewer averages. RESULTS: The generated [Mg2+free ] maps revealed local differences, and mean [Mg2+free ] values of (1.08 ± 0.03) mM were found in the tibialis anterior, (0.91 ± 0.04) mM in the soleus and (0.98 ± 0.03) mM in the gastrocnemius medialis. The time-reduced 28-min scan resulted in comparable [Mg2+free ] maps, and mean values being in agreement with the values from the 56-min scan. CONCLUSION: 31 P MRSI at 7 T enables volumetric, high-resolution mapping of free magnesium ion content in human lower leg muscles. The measurement time of the 31 P MRSI acquisition can be reduced to 28 min, opening the potential to apply volumetric [Mg2+free ] mapping for the investigation of pathologies with altered magnesium homeostasis.


Asunto(s)
Pierna , Magnesio , Encéfalo , Humanos , Pierna/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Estudios Retrospectivos
11.
NMR Biomed ; 35(7): e4720, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35233847

RESUMEN

In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST-MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three-dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion-correction algorithms specifically developed to handle the varying contrasts in CEST-MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST-MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST-MRI data, e.g., for large patient cohorts or in clinical routines.


Asunto(s)
Artefactos , Agua , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física)
12.
Magn Reson Med ; 87(5): 2436-2452, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34958684

RESUMEN

PURPOSE: In principle, non-invasive mapping of the intracellular pH (pHi ) in vivo is possible using endogenous chemical exchange saturation transfer (CEST)-MRI of the amide and guanidyl signals. However, the application for cancer imaging is still impeded, as current state-of-the-art approaches do not allow for simultaneous compensation of concomitant effects that vary within tumors. In this study, we present a novel method for absolute pHi mapping using endogenous CEST-MRI, which simultaneously compensates for concentration changes, superimposing CEST signals, magnetization transfer contrast, and spillover dilution. THEORY AND METHODS: Compensation of the concomitant effects was achieved by a ratiometric approach (i.e. the ratio of one CEST signal at different B1 ) in combination with the relaxation-compensated inverse magnetization transfer ratio MTRRex and a separate first-order polynomial-Lorentzian fit of the amide and guanidyl signals at 9.4 T. Calibration of pH values was accomplished using in vivo-like model suspensions from porcine brain lysates. Applicability of the presented method in vivo was demonstrated in n = 19 tumor-bearing mice. RESULTS: In porcine brain lysates, measurement of pH was feasible over a broad range of physiologically relevant pH values of 6.2 to 8.0, while being independent of changes in concentration. A median pHi of approximately 7.2 was found in the lesions of 19 tumor-bearing mice. CONCLUSION: The presented method enables non-invasive mapping of absolute pHi values in tumors using CEST-MRI, which was so far prevented by concomitant effects. Consequently, pre-clinical studies on pHi changes in tumors are possible allowing the assessment of pHi in vivo as a biomarker for cancer diagnosis or treatment monitoring.


Asunto(s)
Amidas , Glioblastoma , Animales , Encéfalo , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Ratones , Porcinos
13.
J Magn Reson ; 330: 107033, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303117

RESUMEN

PURPOSE: In biological tissue, phase contrast is determined by multiple substances such as iron, myelin or calcifications. Often, these substances occur co-located within the same measurement volume. However, quantitative susceptibility mapping can solely measure the average susceptibility per voxel. To provide new insight in disease progression and mechanisms in neurological diseases, where multiple processes such as demyelination and iron accumulation occur simultaneously in the same location, a separation of susceptibility sources is desirable to disentangle the underlying susceptibility proportions. METHODS: The basic concept of separating the susceptibility effects from sources with different sign within one voxel is to include information on relaxation rate ΔR2∗ in the quantitative susceptibility mapping reconstruction pipeline. The presented reconstruction algorithm is implemented as a constrained minimization problem and solved using conjugate gradients. The algorithm is evaluated using a software phantom and validated in MRI measurements with a phantom containing mixtures of microscopic positive and negative susceptibility sources. Data from three multiple sclerosis patients are used to show in vivo feasibility. RESULTS: In numerical simulations, the feasibility of disentangling susceptibility sources within the same voxel was confirmed provided the critera of the static dephasing regime were fulfilled. In phantom experiments, the magnitude decay kernel, which is an essential reconstruction parameter of the algorithm, was determined to be Dm=194.5T-1s-1ppm-1, and susceptibility sources could be separated in MRI measurement data. CONCLUSIONS: In conclusion, in this study a detailed description of the implementation of an algorithm for the separation of positive and negative susceptibility sources within the same volume element as well as its limitations is presented and validated quantitatively in both simulation and phantom experiments for the first time. An application to multiple sclerosis lesions shows promising results for in vivo usability.


Asunto(s)
Esclerosis Múltiple , Algoritmos , Simulación por Computador , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Fantasmas de Imagen
14.
Phys Med ; 88: 278-284, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34332237

RESUMEN

PURPOSE: A phantom is presented in this study that allows for an experimental evaluation of QSM reconstruction algorithms. The phantom contains susceptibility producing particles with dia- and paramagnetic properties embedded in an MRI visible medium and is suitable to assess the performance of algorithms that attempt to separate isotropic dia- and paramagnetic susceptibility at the sub-voxel level. METHODS: The phantom was built from calcium carbonate (diamagnetic) and tungsten carbide particles (paramagnetic) embedded in gelatin and surrounded by agarose gel. Different mass fractions and mixing ratios of both susceptibility sources were used. Gradient echo data were acquired at 1.5 T, 3 T and 7 T. Susceptibility maps were calculated using the MEDI toolbox and relaxation rates ΔR2∗ were determined using exponential fitting. RESULTS: Relaxation rates as well as susceptibility values generally coincide with the theoretical values for particles fulfilling the assumptions of the the static dephasing regime with stronger deviations for relaxation rates at higher field strength and for high susceptibility values. MRI raw data are available for free academic use as supplementary material. CONCLUSIONS: In this study, a susceptibility phantom is presented that might find its application in the development and quantitative validation of current and future QSM reconstruction algorithms which aim to separate the influence of isotropic dia- and paramagnetic substructure in quantitative susceptibility mapping.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo , Gelatina , Fantasmas de Imagen
15.
Magn Reson Med ; 86(5): 2412-2425, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061397

RESUMEN

PURPOSE: To develop a framework for 3D sodium (23 Na) MR fingerprinting (MRF), based on irreducible spherical tensor operators with tailored flip angle (FA) pattern and time-efficient data acquisition for simultaneous quantification of T1 , T2l∗ , T2s∗ , and T2∗ in addition to ΔB0 . METHODS: 23 Na-MRF was implemented in a 3D sequence and irreducible spherical tensor operators were exploited in the simulations. Furthermore, the Cramér Rao lower bound was used to optimize the flip angle pattern. A combination of single and double echo readouts was implemented to increase the readout efficiency. A study was conducted to compare results in a multicompartment phantom acquired with MRF and reference methods. Finally, the relaxation times in the human brain were measured in four healthy volunteers. RESULTS: Phantom experiments revealed a mean difference of 1.0% between relaxation times acquired with MRF and results determined with the reference methods. Simultaneous quantification of the longitudinal and transverse relaxation times in the human brain was possible within 32 min using 3D 23 Na-MRF with a nominal resolution of (5 mm)3 . In vivo measurements in four volunteers yielded average relaxation times of: T1,brain = (35.0 ± 3.2) ms, T2l,brain∗ = (29.3 ± 3.8) ms and T2s,brain∗ = (5.5 ± 1.3) ms in brain tissue, whereas T1,CSF = (61.9 ± 2.8) ms and T2,CSF∗ = (46.3 ± 4.5) ms was found in cerebrospinal fluid. CONCLUSION: The feasibility of in vivo 3D relaxometric sodium mapping within roughly ½ h is demonstrated using MRF in the human brain, moving sodium relaxometric mapping toward clinically relevant measurement times.


Asunto(s)
Imagen por Resonancia Magnética , Sodio , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
16.
Magn Reson Med ; 86(2): 677-692, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33749019

RESUMEN

PURPOSE: Water exchange between the intracellular and extracellular space can be measured using apparent exchange rate (AXR) imaging. The aim of this study was to investigate the relationship between the measured AXR and the geometry of diffusion restrictions, membrane permeability, and the real exchange rate, as well as to explore the applicability of AXR for typical human measurement settings. METHODS: The AXR measurements and the underlying exchange rates were simulated using the Monte Carlo method with different geometries, size distributions, packing densities, and a broad range of membrane permeabilities. Furthermore, the influence of SNR and sequence parameters was analyzed. RESULTS: The estimated AXR values correspond to the simulated values and show the expected proportionality to membrane permeability, except for fast exchange (ie, AXR>20-30s-1 ) and small packing densities. Moreover, it was found that the duration of the filter gradient must be shorter than 2·AXR-1 . In cell size and permeability distributions, AXR depends on the average surface-to-volume ratio, permeability, and the packing density. Finally, AXR can be reliably determined in the presence of orientation dispersion in axon-like structures with sufficient gradient sampling (ie, 30 gradient directions). CONCLUSION: Currently used experimental settings for in vivo human measurements are well suited for determining AXR, with the exception of single-voxel analysis, due to limited SNR. The detection of changes in membrane permeability in diseased tissue is nonetheless challenging because of the AXR dependence on further factors, such as packing density and geometry, which cannot be disentangled without further knowledge of the underlying cell structure.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Agua , Permeabilidad de la Membrana Celular , Difusión , Humanos , Método de Montecarlo
17.
Magn Reson Med ; 86(1): 393-404, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33586217

RESUMEN

PURPOSE: The value of relaxation-compensated amide proton transfer (APT) and relayed nuclear Overhauser effect (rNOE) chemical exchange saturation transfer (CEST)-MRI has already been demonstrated in various neuro-oncological clinical applications. Recently, we translated the approach from 7T to a clinically relevant magnetic field strength of 3T. However, the overall acquisition time was still too long for a broad application in the clinical setting. The aim of this study was to establish a shorter acquisition protocol whilst maintaining the contrast behavior and reproducibility. METHODS: Ten patients with glioblastoma were examined using the previous state-of-the-art acquisition protocol at 3T. The acquired spectral data were retrospectively reduced to find the minimal amount of required information that allows obtaining the same contrast behavior. To further reduce the acquisition time, also the image readout was accelerated and the pre-saturation parameters were further optimized. RESULTS: In total, the overall acquisition time could be reduced from 19 min to under 7 min. One key finding was that, when evaluated by the relaxation-compensated inverse metric, a contrast correction for B1 -field inhomogeneities at 3T can also be achieved reliably with CEST data at only one B1 value. In contrast, a 1-point B1 -correction was not sufficient for the common linear difference evaluation. The reproducibility of the new clinical routine acquisition protocol was similar to the previous state-of-the-art protocol with limits of agreement below 20%. CONCLUSIONS: The substantial reduction in acquisition time by about 64% now allows the application of 3D relaxation-compensated APT and rNOE CEST-MRI for examinations of the human brain at 3T in clinical routine.


Asunto(s)
Neoplasias Encefálicas , Protones , Amidas , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Estudios Retrospectivos
18.
Front Neurol ; 12: 735071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002914

RESUMEN

Phosphorus magnetic resonance spectroscopic imaging (31P MRSI) is of particular interest for investigations of patients with brain tumors as it enables to non-invasively assess altered energy and phospholipid metabolism in vivo. However, the limited sensitivity of 31P MRSI hampers its broader application at clinical field strengths. This study aimed to identify the additional value of 31P MRSI in patients with glioma at ultra-high B 0 = 7T, where the increase in signal-to-noise ratio may foster its applicability for clinical research. High-quality, 3D 31P MRSI datasets with an effective voxel size of 5.7 ml were acquired from the brains of seven patients with newly diagnosed glioma. An optimized quantification model was implemented to reliably extract an extended metabolic profile, including low-concentrated metabolites such as extracellular inorganic phosphate, nicotinamide adenine dinucleotide [NAD(H)], and uridine diphosphoglucose (UDPG), which may act as novel tumor markers; a background signal was extracted as well, which affected measures of phosphomonoesters beneficially. Application of this model to the MRSI datasets yielded high-resolution maps of 12 different 31P metabolites, showing clear metabolic differences between white matter (WM) and gray matter, and between healthy and tumor tissues. Moreover, differences between tumor compartments in patients with high-grade glioma (HGG), i.e., gadolinium contrast-enhancing/necrotic regions (C+N) and peritumoral edema, could also be suggested from these maps. In the group of patients with HGG, the most significant changes in metabolite intensities were observed in C+N compared to WM, i.e., for phosphocholine +340%, UDPG +54%, glycerophosphoethanolamine -45%, and adenosine-5'-triphosphate -29%. Furthermore, a prominent signal from mobile phospholipids appeared in C+N. In the group of patients with low-grade glioma, only the NAD(H) intensity changed significantly by -28% in the tumor compared to WM. Besides the potential of 31P MRSI at 7T to provide novel insights into the biochemistry of gliomas in vivo, the attainable spatial resolutions improve the interpretability of 31P metabolite intensities obtained from malignant tissues, particularly when only subtle differences compared to healthy tissues are expected. In conclusion, this pilot study demonstrates that 31P MRSI at 7T has potential value for the clinical research of glioma.

19.
Med Phys ; 48(2): 587-596, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33319394

RESUMEN

PURPOSE: Hybrid MRI-linear accelerator systems (MR-linacs) allow for the incorporation of MR images with high soft-tissue contrast into the radiation therapy procedure prior to, during, or post irradiation. This allows not only for the optimization of the treatment planning, but also for real-time monitoring of the tumor position using cine MRI, from which intrafractional motion can be compensated. Fast imaging and accurate tumor tracking are crucial for effective compensation. This study investigates the application of cine MRI with a radial acquisition scheme on a low-field MR-linac to accelerate the acquisition rate and evaluates the effect on tracking accuracy. METHODS: An MR sequence using tiny golden-angle radial k-space sampling was developed and applied to cine imaging on patients with liver tumors on a 0.35 T MR-linac. Tumor tracking was assessed for accuracy and stability from the cine images with increasing k-space undersampling factors. Tracking was achieved using two different auto-segmentation algorithms: a deformable image registration B-spline similar to that implemented on the MR-linac and a convolutional neural network approach known as U-Net. RESULTS: Radial imaging allows for increased temporal resolution with reliable tumor tracking, although tracking robustness decreases as temporal resolution increases. Additional acquisition-based artifacts can be avoided by reducing the angle increment using tiny golden-angles. The U-net algorithm was found to have superior auto-segmentation metrics compared to B-spline. U-net was able to track two well-defined tumors, imaged with just 30 spokes per image (10.6 frames per second), with an average Dice coefficient ≥ 83%, Hausdorff distance ≤ 1.4 pixel, and mean contour distance ≤ 0.5 pixel. CONCLUSIONS: Radial acquisitions are commonplace in dynamic imaging; however, in MR-guided radiotherapy, robust tumor tracking is also required. This study demonstrates the in vivo feasibility of tumor tracking from radially acquired images on a low-field MR-linac. Radial imaging allows for decreased image acquisition times while maintaining robust tracking. The U-net algorithm can track a tumor with higher accuracy in images with undersampling artifacts than a conventional deformable B-spline algorithm and is a promising tool for tracking in MR-guided radiation therapy.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias , Humanos , Aprendizaje Automático , Movimiento (Física) , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Aceleradores de Partículas
20.
Sci Rep ; 10(1): 11118, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632120

RESUMEN

CEST-MRI of the rNOE signal has been demonstrated in vitro to be closely linked to the protein conformational state. As the detectability of denaturation and aggregation processes on a physiologically relevant scale in living organisms has yet to be verified, the aim of this study was to perform heat-shock experiments with living cells to monitor the cellular heat-shock response of the rNOE CEST signal. Cancer cells (HepG2) were dynamically investigated after a mild, non-lethal heat-shock of 42 °C for 20 min using an MR-compatible bioreactor system at 9.4 T. Reliable and fast high-resolution CEST imaging was realized by a relaxation-compensated 2-point contrast metric. After the heat-shock, a substantial decrease of the rNOE CEST signal by 8.0 ± 0.4% followed by a steady signal recovery within a time of 99.1 ± 1.3 min was observed in two independent trials. This continuous signal recovery is in coherence with chaperone-induced refolding of heat-shock induced protein aggregates. We demonstrated that protein denaturation processes influence the CEST-MRI signal on a physiologically relevant scale. Thus, the protein folding state is, along with concentration changes, a relevant physiological parameter for the interpretation of CEST signal changes in diseases that are associated with pathological changes in protein expression, like cancer and neurodegenerative diseases.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Neoplasias Hepáticas/patología , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Monitoreo Fisiológico , Algoritmos , Carcinoma Hepatocelular/metabolismo , Proteínas de Choque Térmico/química , Células Hep G2 , Humanos , Interpretación de Imagen Asistida por Computador , Neoplasias Hepáticas/metabolismo , Agregado de Proteínas , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...